بررسی عوامل موثر بر قیمت طلا و ارائه مدل پیش بینی قیمت آن به کمک تکنیک‌های …

RMSE MAE R SQURE
۷۰۲۳٫۶۲ ۶۶۳۱٫۲۴۳ ۹۲٫۸

معادله رگرسیون به دست امده برابر با
دانلود متن کامل این پایان نامه در سایت abisho.ir

۴-۱۱-۲-پیش بینی با روش رگرسیون با استفاده از روش ورود متغیر Stepwise

در این روش متغیر‌های مستقل،یکی یکی به معادله رگرسیون اضافه می‌شود و اگر نقش معناداری در رگرسیون نداشته باشند از آن حذف می‌شوند.
n3xhwgQASJABA5F4NuhrbNxIkAEiAAR+CLRchEQASJABA5GgER7MMBsnggQASJAouUaIAJEgAgcjIBKtH/113//1frTjuvz6/3b29fHz3bJZomfH19v396/PpsFlQJb6o70xzpEgAgQgQyBKtH+07/+21fy58/rvz0JN38+37/e39+/3vZgWpJlE24WIAJE4LwI4EQriLdNtD+/Pt58Nuuy2rePryWp9YTp/v3x/u3r27fw512mqROhKp8Jov10dZc6c3tT+47YY5vfZPabk3St3HnniJERASJwcQSqRPv5p3//+vzTf3x9d38+f53/zL9rEq0gwIIYHZEuWa4nvYWIs60GSZDy766OrB/+7uuuWws/P96+vkU2TojWKHfxiWT4RIAInBeBKtH+3b/8p7pPG3/vh/Tt//y/aWTx/3GYnugSMlVJz5U2twQEKeZkOZPz53vcAzb2gwui3Wnf+LxzysiIABE4GQJVov39H//y9fs//lf488/+z1++/uD+/gf3fzuj9dsG6+1/uJ2fs82cWBWi9RlwsQWQlDO2JZZtB0Gmap+xD5LuydYjwyECt0SgSrR/+4///ZX8+Yf53+7/JtHKfdMZsmX7wCRan5Vm+68VgvYZs/mgTW5JWFlzsnVxy/nloIgAETgBAjbRRnKNpDv/2yLaiQTzc1ie0PwvLaJVP5szTuszD2JOmDWitcqdYDIYAhEgAvdEYOdztP62XjvvGvZQ//AjOw+bEej0ECve/rt23t0WxETaRVZa9qNuOfg5y+pWy91zfjkqIkAEToAA9GZY/rDr6XF78izS5qdHxQCIABEgAioCENGeCbuQ9fIh1pnmhLEQASJgIwAR7ekyWs4qESACROBCCEBEe6HxMFQiQASIwOkQgIh274x27/ZOhyoDIgJEgAgIBCCiJWJEgAgQASIwjgBEtHtnoHu3Nz581iQCRIAIHI8ARLTHh8EeiAARIAL3RQAi2r0z0L3bu+/0cGRnQGA6UijlPs8QFGO4FAIQ0V5mRJbWbKJ1a7g1WG3AWra1N+T8i2ofpVPEXsLmTv/3E3S0UOPomeiadnDSRhAYGnq3ZG5/FY7/+fUpBvco8vNvEu4iXt+DLcveDgGIaPfOQPdub5oV7XXe5RueyihWv6RWG2b767oIbQd3ieUVYrFsVmnHGLNTEtspW1J1JipLNomje1lr2sHlSyTxleohop1jCm34C6PrM2no8+uj171julAOWiJ1Y8QKRGBFACLacwCWinY3Y8qFwxMyA9uyMs3mZ5W317zFzyy6s43sFASkKHoLIBFHq2jxeRQJSi4giluG1Kvo7kRWCCT76e4G1oTdZcvv8t92B5PGxRDjB1U5ZrWbJvDlK0NEu3cGOtYeSI4yE+rNaLPlkDg1wJ/FOCvxOoL+mInWzvjyDK62VsXtuWv7Hc3yRByh5dhfIJZJ3AfOtHPh9agZ3Ll1MG/N6KSmCAklxKvgU4yxJG9xL5Jtc8x4fLr5yi2ZXp42CEAvAhDR9jbaKp87M9T+Hb7/0gtsFQWvZhjL3mGeUXYQSLUNF4/1WWvg/vPiyx/IqBxPZZ83I9OQFQuSbGVtsb4ax/vXLx/vq3MxtOdbxr86bHQQrRAK+vmz3Gie9kod8UsFzinDlXvF2dh/fn6KDDifnBTfFMdpoiYluu/L+uOWA7K8WUZHACLasQy0DvlYe30ZbfARk3q2gnjhvTrDIke237W68r3FcAv8qej46g+sBEHMJOD55dPtCX8v9jG1wGYCcWXzPU7fnyeWlfSt8c9ZcH5b7YlvyYQtos0eblVIcZG19G0m2x2zk0fSV0qGiaWSmvDOxJ3hGMlc4r/54WHXGmHhuyEAEe05Bt1LtJ585n3DwkmhRSDriBNzyQwI6zMLs0Aev5m1d9cLQPp7YQGUNfbjd7+d684PiWa7IE+0jq+aP5E0yv5iTPHOwcji5kwyT6ATTWHhaFxk7NMteYqzdEZO21mtkP7Hgltul6ThpdkqyXpxvBJHiYH8OzPa5sJigSoCENGOZaB7Z7SNWbTIdCIFIKO12thA1vuuv/rRMayfrfXD9oe3hW/tUoTbb71c+mBrjfyn3LrABsRSROD0CEBEe/pRzAGmWVC2R5vs9dbNG602zPZ3BikeQfshb6mLs6XtTpN9SqN+z7nUWtZaEq9BtIuD8TJ5E3mPnQxo49BbogeP3rZZ/vUQgIj2EhntbeYue7gEvRhgDL5Zv/Yw7mBAs7j8tkE7Qz44pqn5J+HxiKGxj6chABHt06Jjx0SACBCBGyAAES0z2hvMNIdABIjA0xCAiPZp0bFjIkAEiMANEICIlhntDWaaQyACROBpCEBE+7To2DERIAJE4AYIQETLjPYGM80hEAEi8DQEIKJ9WnTsmAgQASJwAwQgomVGe4OZ5hCIABF4GgIQ0T4tuu6OhULX/P7/8uq/ckDeH5Jf3sGvfJ4coq+UscWkW6+8yvfxBxXHkrgq7+Rb+rndOJ+wQvHW246ODJCK2QkxYUinQQAi2mtktIFkJTEmr1GqRJMrfOUklbVZIava65ottwW/ChJhmkRPIX19ta6NC7hHvJDU366ODPPXtMe54jTfbAZyKgQgoj1HxA31riEiTUWz3zSbEyn7V8sKrWwxF7RJwLTGlH1m9W24RwSFLpcpO7UsdXzA5HoJxpoomPUZ0PRBRbY7MqTTJKUjF/YdxvOgQbPZEyMAEe05MtqWTGKuT5qhrhGVJMEqWbayXi9mVXNJbbsteO3Wj4kMZ0KM0oGJruuU+676ugVZr1sOqB9a35q03B5QJwi0xw6x8L0dGWKIuVJbJraujyTHoWMcKDQsd1kEIKLde3SHOiyYKl2lhumy1VAl2mjL4lCo7dHCli8a+YvtDkmuXbKMgHtEzx6tQiw1WcPpEpBZykxZtMPk11mgJdkLzyCIZeP1pXQ6qKw+P5558vZyZCh7cnM/+Q5VLiYJTi3Hhr2/RWzvSghARHuNjFaBHcpYW7eCRkY7kXrFhBFZBVbWima0+dZEzT2ih2hnGxe5XWA5DKSfBeeG4Pjw01nNeCBqdxtr2amvitNBgPJ4RwbfR+qiE+5I6s4VKbkuOJjjQBYGy9wNAYhozzHoxtaB4swavrtzxtgimtrnMrNUyqwPX0ZQcmMq9lcjcYN7tGjm2xp/kWx/OP8wb/Wtuy2oDggzIXqx79VBIr+LkPu98cSF5nSQ7Qs/wpEh62Oid2/vYzhXrG4Xcsyp8wVgejGyeFjnQghARHuOjLaFannqoPQNa1mzjJw6mMliUEw1OXWQZLGpLmr11MGDMtoW+unnrSNtsjRW9hGODJqZo+0VhsXehx1L3xEBiGivM/D8HG3dSaEYU2X/tTxHq5D1XLfqzGsCKGPWib6w/s6z09q+dMJn9VMHqAuDNYzPxawsF84uH+LVy9Z7CHu34vM4X4MXOK2n4hhXdrdg4URHhuuwxDMihYj2GhntM+C7SZ/ZRWaIuyTZtx4O9pSNECsXwqE44YueYvao4kRHhpt8Cw4dBkS0h0bAxokAESACN0cAIlpmtDdfBRweESAChyIAEe2hEbBxIkAEiMDNEYCIlhntzVcBh0cEiMChCEBEe2gEbJwIEAEicHMEIKJlRnvzVcDhEQEicCgCENEeGgEbfzwC8ZhS6xjW4yNjj0TglghARMuM9pZzz0ERASLwIAQgon1QLPt1U9UkkO/di7ewkjer1t+n7/OvdbWD8mVZ43XfZKT11zjV1z87NQuqoJ7ENaDrjaqTxLzfQmVLr4IARLSXymgrbgKJpoCc3Yy46k4GrlIh4LI2VG3fWEktB4bktdOdb/ef7xrQ/0bV82N+FVrgOPdGACLavTsda68l/B2UunQ3AaEp2+q8mjHWhLd9gx3t5/3nojDyc0fsMXsu3vVvjaP1uWu7V5vh6W4KWsx7ZfgtvPg5EdiAAES058ho20S74FB8+XKxmdRbLE1wnTSgsjdgZrqT+0EqB4i9h992YJh0pz2Vz5KFeruoy0Fq3fOeqLQgqwjtB2krljHapNNBD5Ase2IEIKLdO/5DHRYCK6V+TkXWqGSgi2CIJuRtZbOxP1lvQ4absr7z+kp+8eW1XstMtLLPmzgA+IzfxxiJDSDNrL6PRJMrXO4kpLpWDFtrY3ZgCMURqUE6Hez9HWR7j0UAItrrZ7QlqPU9VYVUjb3Z2nTF9gMJzX+wNFc0GRwI1h9HOO8fjuzeErffcG1xvy+CESSWqf7XXQNyYk8f6pX9zK4E/kKlji8n0sxVQY2dTgePpQH2djQCENEeHQTW/patgx6izSzAfRbnyLJ/P7O+PYGNN5QKRB0dCNasOf29Iuk3d7I6AKSq/5ZrQEK1jsAtp4XUR00/aZGSc+6qoMROp4OeJcKyF0AAItpzZLQdaGrC2Mnh/CzTq9rJTLmiu11v+IIVGS9yO9wxnuGiW+No1Q8ZtrZjkGThbzkB2+3S6WB4wlnxpAhARHvS2OthNc/RpsSZnoHNSbWyP6sdC1seiG0wbBwAO55F/eFcDhbSG3B9GHFayPdsa230uCrQ6WBgEbDKqRGAiPZyGe2pId8zuOws6lanhJH6+W1+rY0uV4X8FEeWEdPpYM9FxLYegABEtA+Ig11cFoH8wdVlB8LAicBhCEBEy4z2MPzZMBEgAi+AAES0L4ADh0gEiAAROAwBiGiZ0R6GPxsmAkTgBRCAiPYFcOAQiQARIAKHIQARLTPaw/Bnw0SACLwAAhDRvgAOHCIRIAJE4DAEIKJlRnsY/myYCBCBF0AAItrL4JAcZLcOuWuvhEbxl/pbXbiLQuvVVQXRHveAnrKHTV54qaBXA+KwcA5qWBfrOagzNntbBCCivUZGm74qm1qkWJ9lIjIbXRRargm1ldTjHtBTdnzlCu3aSe8hiuTEt7Y6XzMeUEAbj32/mrrg+vrmWrcg236hsaULIQAR7TnG01Dv8tlsIQ4zZ67WZ5NoN+LvBYjLRKAs14QamD2OBz1l5/5Qd4RWuceQ/LNWnLygLMAVkpSF3vGzwmW/l0EAItpzZLQtQhzMaGcS/lh0Y2uZGuqi0HBNiEtji3uAIqbdXnGK0HdxAfKtyHLK36NmQS2Vc8I2pS6ub3eWR9w1BVSIsQ1EXwmHUSq+3ledpYmARwAi2r2hOs5hQZBhkt3OBBLVteRn877u8v1XycfzhHdtOMBFwRPQ9E2uOB4kpBr2fiHRbsQdwQnCvDvXhdy6Z1XkknvN2b5zZStgVenKVs0cj5oxy1g1opZ774KoU8cIe5UW/RZtRp3cbN/ZJFpEJnLvbw/buyICENFeIqPNiXDKvMTWgSTJ/DNTj7Y+rSPOtz6z+5kIuIYMuE6eKcH5hzMQ0SoWMfmDnUCoJVnIcrW/T6gorgq2c0VNoDzVB14fsM3kt8xP3TEizaJdVq1YAK1Gly6OrM3vy7zkfaYuFyseYR75sOyKtPf4mCGifXxYWo+NrYMiwxJbCdZnPpN8JNFudg8IpJwSiT5DngQsd4Ros+MJKD1RER0dpLtD/vd4SiPf3y63WBYrn+mOQt8PX50gUpPLtK6MIXWMSHhVy4qlTGNmpLk6WOR9h1hLNwtZDtnfP8c3iFE8DwGIaM+R0TZAGs1o5y9Sc+tgJxeFx7kHDBwxe9o63DdWzUDSGa05Y8qnDZAdvzgCENFeBqMka8kealmfJXbhIkM5wEXhKPeAEXeEZ83r0bEWR7Jq++7PAoD9vhwCENFeIqO9zNQd5B4w4o7wLMwOj7WB8bPGzX5fFgGIaF8WHQ6cCBABIrADAhDRMqPdAWk2QQSIwMsiABHty6LDgRMBIkAEdkAAIlpmtDsgzSaIABF4WQQgon1ZdDhwIkAEiMAOCEBEy4x2B6TZBBEgAi+LAES0L4sOB04EiAAR2AEBiGiZ0e6ANJsgAkTgZRGAiPYq6GAOCIq0nuXMkAx+VXj6lih5tRAaeMW0x0Whp2wr1A2fp2LrjYZOEvOG4bIqEYARgIj2KhktoqYVyXhV2wtvEcV/W2SRtA86BtzHccFaU+EC1GNrc28Bcfj7x4IvggBEtOfAoiX8DTggTO+8vzu1rpVYJ6k/SL2r1b+B0oUdFw6be80lItOWOKxvNkwEHowARLTnyGhbRNdyQIhEnG0doEQLOzHkM3ghx4XNi68iXu7b3eIoscT1AEeFzRiwASJQIgAR7d7AHeKw0HBA8Leq4dY2/7IqWwfa/ivqxLAZrCc6Lkx86LVWK3Y+mmuDL68Jc1dx6B9f1JrtcVTYPA1sgAjsiABEtNfIaEtUlj3VJGu1H4a9OVuZjzeFaIzMNwpoTyLV3Z5Y53FcWNwfFOeEgG7+UC+4D0ibmNJxYPv4JqKdZS49vC0DyR2/H2yKCOyCAES0u/S0uZHW1kGdaMvTCEEhX394U+tn3InBHPqJHBeCL1rNOWGmWufasLoZxFMY0pEhcxzYPL7YtuGosHltsQEicCwCENGeI6NtAAE7IGhbB2sGO5FyJStNTh3sJCZ9HscFxGhQO6ZmH1173PiO/aKwdSKwBQGIaLd08Mi6aeZasw1Xtg6k+0LhkCszNPnAbR+vqDM5LuQWMDUnhNXptn2s66jxPXJdsS8isBUBiGgvkdFuReJp9U/kuJDf5tecEGoXJhXDg8b3tPlix0SgHwGIaPubZY1rIpA/uLrmKBg1ETgbAhDRMqM927QxHiJABK6EAES0VxoQYyUCRIAInA0BiGiZ0Z5t2hgPESACV0IAItorDYixEgEiQATOhgBEtMxozzZtjIcIEIErIQAR7ZUGxFiJABEgAmdDACJaZrQnmjYKZp9oMhgKEcAQgIgWa+pEpUxd006HBXk4/5vxNhigE6Aj1Oe+EN5+e//6JdEceDL2Bt6lyMyTY2X3ROAJCEBEe6mMdiFGnRR1h4VM6yC+hpsRSF0Hwb/9VGnDmNQx94WomFV7xfiBqyheXBLhdN//ejEL0oYPjKm7K2rcdkPGCt0IQETb3eohFdrqXYuWqnuV9E3LPmGHhUrmWsvcVAlFUAsBcF9IZQFncW13QelWZHTzsqfEIESiHXHuFhudGg75BrLRcQQgoj1HRtsm2gUG9YtWcVhwon9oNrp3Rutoz/Ud5f8qxDxl6DIrDCpbv7oxOuncvp+irb7qeeny7kCWmC8IRZyGC4PHY+TqsW0Y/vLzpH43B84GLoIARLR7j+UQhwUZpEK0dYcFX1EInxS3wf5OOOq0WrfBjTYGQFyIPcsKfeb33STaUvKw1lYaFiKVWNBtxZgx7D2Xcdp70rmC2HSXos2J355wF5xkVyITwZmE2Gv76olbRN8++cBUssqLIwAR7eUzWsthIb91n7K+2m1/mv2mGbQgYdHGuPuCJG5nwyMyvYlo3cXBuxvEn/WhUxCGSR9C1duy6yHfjkB4n+4hXZ6M+rbzOH2L1gOyPG7p4NCM1Q3c/4c58qbkyod2yFyzzCgCENGONr5vvfGtA9NhoRAMr5DpPBjV0ryzjRFcAmFLt4Ho7yXdDaI7gpHJ+fw9aUvW0ep9fn2KLYoVy9jveoEp2w0XrNrv14uEP0mhOTtoDg7WGO25y3H/8bvfVvodmSHWIQJ1BCCiPUdG2zGNPce7rIwWJdCurLhjHCcommR6ijnj8SHit/V9WSne7vFjZA93RwAi2suB0EO0fnDJWdl0H7bq2pD3YbRxOfxEwMmeqRjj2DMrLOPscXCQ2FqnFmpuEVeeG8Z+HQQgor1cRnsd/E8fqb5V4k48HHk2tsvBQV4V8hMa4rOaW8TpZ4AB3gEBiGjvMFCOYRSB3IpmxFJ9tO+BesmdRdjPHcu+B/pmFSJQQQAiWma0XD9EgAgQgXEEIKIdb541iQARIAJEACJaZrRcKESACBCBcQQgoh1vnjWJABEgAkQAIlpmtFwoRIAIEIFxBCCiHW+eNYkAESACRAAiWma0XChEgAgQgXEEIKIdb/5JNbU3wwwHhFILoaUl2xKLfv7rnX2vo4Z5ssVenB6BqqKlzDHtdp608NntWRGAiPZSGa3qsBAO3ceD68HZYJXYU99+MmbM0mEdc03Yf3lAotxZt7KOx+TtzeH0P//m62/e3N87XgXzGPAlgf3nlC1eFwGIaM8xvLZ6V9VhQXVAiJoGURAcHKXm0pBXBVwTwN7Gi5nOBpWMvMMNwQzMtVMQM10PxueSNS+PAES058ho20S7zEb+pTaJtnzFtJ6N
1Vwa5DoAXBN88UIZbPrlNqX/OZufSG7EgSGpM0sULmAYseVjgVS+8vZa2zGX/65xAC+MAES0e+PzeIcFZesg2sMU2Wc9w7VdGkZRcv0tnjSzK8EsXu3f04dv2f04ZlL8GZS/U6sbJypbON/IfWtfV9aZ/74qYiH7znEsFVI2XA3CtsXGC83oFLAeETgYAYhoL5/RehAFqbw5Yvtw+4+1bUd1z9ZyaeiapOCAsP6kmXpwJYhl5qyyYuXy+SkcFhyRpoJaqQODz6BX0s7bjQSf1glbMeuDwfJhmT4W76qge39VXA3mTNxz/W4GjV1zwsJE4FgEIKI9NgS09Q1bB0UXdlsa0ZouDegQpt2BUmIwVfoHHROydqRlTrzbt50UdGeFso6MJzuNoYwl2tdIVwYJjz7WaFBpO0P0wMyyROBMCEBEe46MtgO24sGL4nS7slF2bAm8RXZP4keerCcC1POQRo5i5SaGEZ2fH+/HasWKaegfC4JtxzyzKBG4CAIQ0V5kLGuY2hNuQ0wadlFYehh/cFMcfRIPkvJjZ/oDsxBEcXwrbo2MsP/gBFtj8U1argbFWAdjYDUicAUEIKK9XEZ7auTzUw7e0bZ0bl22AmrEmTkGPEfguhxL8sBNdTVAXWpPPYkMjgh0IQARbVeLLEwEiAARIAIJAhDRMqPlqiECRIAIjCMAEe1486xJBIgAESACENEyo+VCIQJEgAiMIwAR7XjzrEkEiAARIAIQ0TKj5UIhAkSACIwjABHtePOsSQROjEA8fobq7J54KAzt3AhARMuM9tyTeJnoKAh+malioPsiABHtvl0e2Zo4QG9mKVY54zP1AH4czyzU4hS3vkVlsGWoRpvyjTUh4NJGqf0666o2prc2vZ2VvBDh2nxfBdHbMfSVCG/gtdwrXJuZrKX6ivJe+rY7kv+hcVpQ7ziGvhllaRQBiGivkdGmr8WWJJISYuK2sJCN1UaqlxDUwFYFsESIJtFnNdrMyKIeczqdkItDocGrLYn5AiA1Z4UTBbqI8HKZophRUV4kkteNd77d39MN4sg4TZ6lowW+BJ9UEiLaJ8WWddtS78o+r2Y8VjnjM0+e2euwK7lasaFxzZkckvF5ZBouDl32PEJCMRer2Ve2sEdvVuAmnB9GLHrM9au5QYwueDDOGrkPY01Hi9EZe1g9iGjPkdE2iNZ0URB4WuXQNqbmRIY71/uY9FuzrYOONtGMNvQdpQW1W/HWRalcX+HLr20ddDgrVJdtbEO233ZYWC4WQpDc8mvDHSrEXQbkBuGn211oW0LsUJxxi0nTQ5aYdOAOjaGN98NY5wU7goh2b1wOcVgorGGyW/04CKsc2kYuAjPfzq47EG5bIe4RI20ue791MfKuOWhtG6hfzLCNoGnY1CQZ15ikS0T47SSKs+yTr/vJNccGzWFh2T4QBBZarwnTVPats/GmfQFZtsdTulfkkxHbR+Kc91NTfNYGV6zbe/ATDpM7R2UMybjT9uho0fWN2lwYIlpmtBLnQEiJxcwBWbIU8s63LJqzrvqRyVral7j+xUadFVblrrAXK2+FYxva72K2mDssrPu0+d5uyIw/lb1JXdtXjC1zc9DdIFzspntFwbTOscOrsAFxxotqGGxxYZPxo7jT0aL5jXh6AYhonx7lcqtuPbFG90IH92inRMo/ANOyPtdmcspBZtNoXGsmuFlStpXRTkNxRLVMrCcil017x4T5l6lGL+askLbnt1CkO0P8u/Y73WEhfSAm20sfQqb96GtkdXZI+/IkVbhBAO4VZVIb8EwdKvQ4p/mdCD98nmJNR4tz8M2+UUBEe46MtjXw9HaydeogZqRpOaONKskqBJkQndEmsq3QGrb6eWuPNvfu8seuwv4yQvKYswJy62sPruuBntlUXyz97hV97Q9Nqb84Fr5w+QVTz7QLU87RAFhvGAGIaIdbf3jF+biSJw2ZYRYnECrllsx5fqgl2qh5hq3EJNosTg7U+6u6O2zETpKU5XQw0k3NWeGXJTVULi7Zuea2w0LrYlFGHtv8IQlpvkDCbsJTspntlcvb/ZzwBtpvY64/X6CjRRu5s5aAiPYaGe1ZIX5SXDKrXh624VlrI9ec9qljFry8hJDZBf2qPrTCHBZaL1uk8WVtbh1vVr/I9Le2P7wk5MVcMbJU48LwHg6JFSEEIKKFWmKh0yHQR1YnCh/YYz5RtAyFCDQRgIiWGW0TRxYgAkSACFQRgIiW+BEBIkAEiMA4AhDRMqMdB5g1iQARIAIQ0RImIkAEiAARGEcAIlpmtOMAsyYRIAJEACJawkQEiAARIALjCEBEy4x2HGDWJAJEgAhARHsdmKw3vuQo+t8MC7VPVC85nF7TgEhFx8MYokyf4gRxoNvD6dbQoCuBLlqTj07D/XQIMKAHIgAR7TUyWssdQSJqlbvKZ+krmrXXWTXt1qoTRPaaMqqNC7k9PHBBo12NOivsLjyOBsxyl0YAItpzjLD17juqkjWq3nWieqosY5bVTmWcDN+bFIppYShmutCHMFbBVHYnLd09FhsS+6izQiFtWM9ehx0T9sCAbZwKAYhoz5HRNkjC0oRNElohyr1sB8wkMaor++h60t3BbwZ408NEtGWWPfyZkcAcp+oEkS1LNKNtuz3MDasauYDotvV1QVwPavUTUWzkOznHWoh7mwF+vSNyaEj3LHNpBCCi3XuEl3RYGHVmOKLecoEoVcb8R6vGgUK0UgpR0xRY9n6PylCjK8AU6SyYve4bwypbPk7E9SBfvAvBAiSfkPEca0K07bjb7hR7f7vY3hkRgIiWGe3EXqs9zRkyYXmrPmV289aBooWrWuzkYyhW57oPvMntwZGpS6zFT3pn4h8ufV/KzMSlWsWPuR6UWqyR3AGinS8EsY0Qq3RRiGOrx409PDsjNTCmPRGAiHbPDsfbau0vvtAerZEl13RzQ6ZoOUGUM7OL8HbmVuB7Wd0OchcGRXoxhrXB9aBMagNhFs4KyuJMYw0Xs9RFQcYcpAt/8Vs5i4yk5Qoy/m1gzWshABHtOTLaFrAHOyxk2qqwM8MR9fKHTzKjTWAqH9Qk5Cmz34PcHvpdAfR53s/1oMcNoadsa33y81dGACLa6wB0nMNCwOBE52iTM6+1/VTtiXjdCeIItwfLFaB4iGeYSo66HvS4S1hl244Q1/mWMNLHIwAR7TUy2seDxx4RBEpXAL8n++GOnckHX8s+cO0p/ajrQY8bAh0KkAllmQEEIKIdaJdViAARIAJEYEYAIlpmtFwvRIAIEIFxBCCiHW+eNYkAESACRAAiWma0XChEgAgQgXEEIKIdb541iQARIAJEACJaZrRcKESACBCBcQQgoh1vnjWJABEgAkQAIlpmtK+3UHhA//XmnCM+DgGIaI/r/qCWm3qkxhtepnOB4U5gDqX/Vc5SptC18f7hjvof/+NfHoBVtI4Phz0QgcsjABHtpTLa5dVUzN4lJTTbuaDqTmAsg3EHgvlisLwpFf7dLW9a1UG4/NrlAIjAZRCAiPYco2mpd0VVJffev1N6eouygUXwhsqX6VzQ7r+K0xYHAuEEkAurtBT8p9dau5nZjyKQOrPac6x8RnF9BCCiPUdG20F01taB6cRgZLQd7gTpsohxd8SfrasgzKJtHSiaqqYDQF4+F52ZP58kCXNJxesvdo6ACDwLAYho9w7uEIcFGaRFtE05QEsBTNy6a+4EewClWqzUtw3yLFeTJVzDSveKgyKWJN9ZFLu5/bLHQNkGEXgdBCCifZmM1tJ5NTLhbQ4E+WLTHpzVH6blCv6rjY2+iJfyM5n6nQW5BSHbozvA6xABR3osAhDRHhsC2nrHrbd56sDYozWz3T53AnRUWrmU4GajRX87P3uqpLqx+UM/eTIiV/+Xjga+XszefyMcAeTf6Q6wZR5ZlwhEBCCiPUdG2zFpJtEaTgwN54KqO0FHaO2iafYqSXXouVa7Q5YgAkTgYAQgoj04hv2bz4m2IF7jHK3pXFB3JxgdRI8DwGgfaD2+pIAixXJEoA8BiGgvl9H2YfDc0j0OAIdFWjoeHNYVGyYCL4gARLQviAuHTASIABHYDQGIaJnR7oY3GyICROAFEYCI9gVx4ZCJABEgArshABEtM9rd8GZDRIAIvCACENG+IC4cMhEgAkRgNwQgomVGuxvebIgIEIEXRAAi2hfEhUMmAkSACOyGAES0zGh3w/vSDfGFhktPH4N/IgIQ0T4xvr6urcP/yRtf2Tv8lquC6bggwkPLFSPqd1/oA2Wf0nRd2AdHtvKaCEBEe42MNtWS/ZK6BdkruLirgu24sC6ZVMYQzfzG3Rc2Lla6LmwEkNWJQB8CENH2NXlU6YZ6lyePTHUlEYGRYUnitVwVTMeFLJt9k35eGelbkGxxXxiAmq4LA6CxChHYiABEtOfIaDtkEidQ6mS3e0ZrujZYM7TdfSFtPXdMmD+l68LGrwmrE4FtCEBEu62LsvbhDgvOK/bjTfG8WvZRvbOAjMtQ81o0W52Wa5K1lvVjQh2kDfM+9kFxEel2zgifP1N7m9IxIfRJ14V9sGcrRGAUAYhor5XRIsaCItttuSpIwrT2NsXDsDen0P3xFoh2m/vCz69P5xWWULozXAyE7vpwHbQcEyaidcRvGS222qDrwujXi/WIQEAAItpzgAVsHcxkhwhkL/u3lqtC01+shgwQKwLqZJKYFUxOT9QcE+i6gMDLMkTgUQhARHuOjLYBiUWyFmHuktEqpxMQtm8N6fPTbYLkRKuQ76NWC/shAkRgCAGIaIdafnCl1Edr9cpK903j77P9U8tVofZZ7togy1X3cvtAKU5NHOW8a4SFHlXrGxlLE4HXQgAi2ktktLecN2mdYz2MO2LwdF04AlW2+ZoIQET7mtBw1ESACBCBfRCAiJYZ7T5gsxUiQAReEwGIaF8TGo6aCBABIrAPAhDRMqPdB2y2QgSIwGsiABHta0LDURMBIkAE9kEAIlpmtPuAzVaIABF4TQQgon1NaDhqIkAEiMA+CEBEy4x2H7DZChEgAq+JAES0l4Mmf2vLD8BwQCjfKsu1AqYGJkWw+pu14fNv3/wfS7mr7qggxVuGMZ9UvYZr71QREfbZqasnNrPLfD0xfnb9OAQgor1URru8CivJ0nZKqAqEi3mIZFwj2qSNQlshNNRyVAgyh9sm3/exg8xCIwh50ZF/j2+ydY6jgtc2JI6vrc/X+jbf8fNw/BjZwz4IQES7T1dbW2krYgVJQvcld6pXb98E0ZpOCZ4oGsQw1X//eq9mtO3YltFbjgqOcDZ/OV0bliSiNguLxm1jilrlHkPyW9fRaH3ljkabL+1uarRL1rsNAhDRniOj7SUzNKPN9ATcrX9KdpGIja2Dmcg/JqK3tg4ajgqFE4Ir38u8ro337rRY6UcVsJHllL/Hu4lq2u+2NdSvzrzt0jtW82vY2urZ4TtsOlfs0D6buA0CENHuPdrDHRbUrKLiolBkmGmGu4pmN4hWEvSoylbxxS33c6esXVMHWwgWIGeFjD8/pOeZm3F3V/DutjIKH7alnIwti7OyFfDpZB91ng0XBzVjlrG6+kULcu9dEHXNbQLK6Is21/335G7BJNrU/WLv7xDbuxYCENFePqO1NGeV+Vr2WxPCbGe06/Zqhzlj0n9wTZA/6QOX8Ll+Cx/I7ru33mlmhiWB5w92AvGWZFFzWygeDHnsULPMxS6o9hBy/n2yLTKT33LREWOaM2vffYmVI+uErdN5TS9kEVOHxDQteZ/pfK0YhPJ8WHYtMjwyWohojwwAb3vD1kGnU0Ik2prGbbkH6mIbdcHNAAj7zL+ZtyD83yX5xMxKI6TwxfZEW0sccwL/ZfI2i9sdaZvRgseTVYqDjK32d73NYJi5agWvfdfKh4h//O63Ik6rfozHjyX2lWGlZcWFa4XsQ45R/j60W85XWQZf4yx5VwQgoj1HRtsxBfnWgZXRFiRcO35l7/klpw5Gtw6gIVrx6QRcNls/YgaF8NBC+8ZabJH4sWiWQQ8dIzu7OwIQ0V4OBG2P1nBRSDO22gmEjGiLPmS2hhKejWy0RV/3NkMMPqNOnG3nPcXaaYOess+e66NjLY5kHXpRfDaa7P8sCEBEe7mM9izoDseRPXzRbHKSFzCsFylcED1lh2PeqeLhsebbF/tcFHcaPZu5KQIQ0d507BwWESACROAhCEBEy4z2IXPBTogAEbgpAhDR3nTsHBYRIAJE4CEIQETLjPYhc8FOiAARuCkCENHedOwcFhEgAkTgIQhARMuM9iFzwU6IABG4KQIQ0d507PceVjwmpeki3HvkHB0ROB0CENEyoz3dvB0T0LNEwx/Z7yP7OmaW2OoFEYCI9jLjsg67J58Zh9TNA/PriwS2i0KOWP01UlV4RFUfG5iFTlIJb8hZ2Bzj3hD7/cVpNVT0vZbBbxVqaY0xiLNnSmY16DvxHZhBVrkJAhDRXiOjzRSzEn0D22FhnUurjSAgsghSga4AXa4KO9/u9wtxl+phcp33t4d+S6IqWduZIX2FdkRztjbG9fVmNOrj8EAjYLmrIAAR7TkG01Dv8sRXk+Ur3mevtGW1MalBDb6uWWjeCkSFSv8eVjbJXHW7LUiJRYXEsvZajgv4upn7LRwL9BiaKpBzx3p8iIwkGLmG7153I2AILHYNBCCiPUdG20t0MjtFM9p80kS9mazbLgpaG1G2TyFqIR5t+5KhBCHISRH4tpdlQ6y6aA+NqfVlCP3+agppz20UZawYNEeIliC30V5+FwPhm7c3koW38OPnZ0cAItq9B3G4w8Is0JyqWVUcFqqDy24l59v6JZvaS/WpII7aLWxlnzf7sqfOAv1E6LPA71Hg2mnHFhjmdw25M4OCZ5FZyn3wub2p3wSLTFgntqviVb/TWGURV/zyeDSxb3uv2LX1ManR6iLryZyk89bj/LD3947tPQ8BiGivldEGQs0tR96kBfikhmVtA1TaqIh7R5HsScgava9d5jzfMwwZ16fiZqs/CKo7C2BuC+nii0RbcxTI3RvKmPodDIKAdnCHWB0mMFcDH731gExzhEiJtnStKNuLsUSswt1VHd+UXJf2TOeH55EAez4eAYhojw8D6QHYOsizzuV74YgVdUCoteGzF7QNZDiiTKrSvz4Qst0W1gZWB4LUWUB3W0iJcNXijU4CdUeB2F6q37uXgwHuWNDCpe0IoblW1Fwt/FXgo7CBb7lZpK4QgPND55ph8WshABHtOTLaBrBVgpxSHmc/Lp5o1zJaq40p6xKnDvbaOti8XvocCJJsDdpj7Avwmg4GNoaJGPkMh33MrG9O+hBm6SsiABHtFQZW8/dKjmMtflWCdMVT4mYbiefV4AmEQTDj+c4fzvNqsW+cLww1ZwWtq4QIhaB4945HZRxndTDIz8dqrhW1qSmOcWUPxSxXiK5zuYNrg9XOjwBEtJfIaM+P9WCE+kO5aGzYS5BJVr5srZS3xoPB+rw/M2B87AWpjLvycFFzragOujEm9SWX/nO545iz5tkRgIj27INgfD0I5KQx8gCvpz+WJQJEACJaZrRcKESACBCBcQQgoh1vnjWJABEgAkQAIlpmtFwoRIAIEIFxBCCiHW+eNYkAESACRAAiWma0XChEgAgQgXEEIKIdb541iQARIAJEACJaZrQXXyjPEqh+ZL+P7Oviy4HhPx4BiGgfH9bGHjVN0ORQef0Qffl2mCirHkzXYu10VOgdbieptFwFvjrbQ8OlcwKKFMvdHQGIaC+V0S5v/EgyxfVo1TenplVguy/EhdLlqDC4uvqV/emc0POacj++gxPJai+DAES050Cjrd4VVJ2cjoFTW3qTMoiow8Kkw1qxUzHdFzKEQEeFYVzpnKB4i/Vr71bxp3PC8NJkRR0BiGjPkdG2iXYZYrF1gGa05eupdS2BLMNdOo9xVuLtcgioLNtu1S06J1RFuqeblUxGE8KXzgkkVRwBiGjx5rCShzssaHu0Uuyk5nJaZKK1DHeDYAjgEJAq/gtMFwLoz97onIBIF9I5AfsGs1QvAhDRXj6jRfVoFfTKPVvFfaEL9XK/NNU2LRX/1+YDWdA5IXVViPjROaFrIbLwAxGAiPaB8Rhdbdg6KKzBa7f9ZfeF2LfTtO2VJsxbtR0ColeWfjKiruxP54TUnijiSOeEc3x/XzsKiGjPkdF2TFS+dYBmtAUhi9vNhvtCR3RA0dptLnhsDNpjBMI
QReic4MFAth/6cGXp10AAItrLQaHt0UqhZ2lrk5VNz9GuJxDa7gtjKE3tuhRZU/y3lPuLLFm60dI5YSbF3MU3RY3OCWNrlrX6EYCI9nIZbT8OT6iR2Wlriv/wCxKZn1kcjWIqOD5QOieELaMND0LHwWfNiyMAEe3Fx/gi4dM54UUmmsO8IAIQ0TKjveDMMmQiQAROgwBEtKeJloEQASJABC6IAES0zGgvOLMMmQgQgdMgABHtaaJlIESACBCBCyIAES0z2gvOLEMmAkTgNAhARHuaaBnIpRHwb8T1yBVeerAMnggIBCCiZUbLNbMJgfmM8NZXlzfFwMpE4IkIQET7xPjGulbVu2JT4cC5/NJbrgqm48ISXdlmEjjo7mC94pkKz4zBcpSTghXNpOswgd0W49HH2K6n9b8LXoMwH13tzmM7GrtntQ8R7aUyWtVhYYU3Eqck2rqrQuWNq2y2tDbXIpgW7jmdGfZYlvFFioqguuji812WwetpUaZtjYyjcfEcaXKnOvrY1hdWeOewE9A7NgMR7Y79bWiqrd5VdVhYklnnvOBkBt+TjNZwVbAcF8w2xTBhdwdX5yTODKnc4IYpm4b0hquduYtkJImuejrTFnctLQLqHreik9Hqox9NhfAFTutNVeYq0t8RaxyIAES058ho20RrL7pIqPnCtVwVWo4LtTbljGEZbbi19tKIZ3BmAIXF57sH8wFXvMNAGEiKovfUi3DLeBKB9agrYWTVU938c4lDCxOgj72+yIV4/F4Ns52jEICIdu/On+Gw4DOkQAgZ0VquCg3HhWqbBWCCsGvuDi2Qj3RmUGQVVVlEGaPHZibPnz89rtlP3mYhQZlm/e9+bjQCsepZ8ci2ZpffmnNFVFDzljbp9UDKIlYkEuM4G33oSXemOSz38qdAMuEhcRf1MQncaD8N26LWOuPnhyAAEe3lM9rk9r299wbt2aJtolq4zek90pmhJJHygctPJ+W4Emoi4Vj7wrttmoQPBDmnVVbniI/pYliSdiT19ZNWPAKvSGCevAoylRdBdzHOMm+Jg/4Qao7d7MNHnQqz5xf89CIQ8fj5Fa5hM+EuF+l0LaxxhfJ8WNb8Mj28AES0D49K7XB866CmJVu75UWIFm5zg7tDDsMxzgyhF//l/MVr4zoHifAnI8lMcjHEEv7UdgV+/O63or1Ku/MgVzsaX066IozHI/EKBx+07YEU5RJjw6FhrhrHafbx6TeFsp9EI3nFM+CqYbDOSxmnrK+7c5zje/yaUUBEe46MtmOCeo53Wa4K1mdJOEaWvFtGi4y/35lhptnJi6x6N+o5SgqLi1B+frx/aUlonxtBv3NBfzwIfiNlsNiv6VAxggfraAhARHs56HqIdsrmZCaXPhCxPltx0fZ9BXHV3B02ALvFmaHHuSGGWBwpkrfKHkOXsS03/fNntTuGnrI1iFrxbIBWrRqO3318/egYp2xIjXd0v37vwbG9wxGAiPZyGe3hsD2zgx2cGTqcG5aRZnWKLYOeNnvK1qBuxbPbFGWOCsOxn82hYjeA2BCAAES0QDssQgSIABEgAhUEIKJlRsv1QwSIABEYRwAi2vHmWZMIEAEiQAQgomVGy4VCBIgAERhHACLa8eZZkwgQASJABCCiZUbLhUIEiAARGEcAItrx5lmTCBABIkAEIKJlRsuF0oXALLDSVYeFicCNEYCI9nLjV94MM50Skje3DEWl7P1/zH0hf/NM0RFYAMZe55TzsShPyTbeP9a3tBBN3Z0nOOBSvtJLsZOdgWZzl0EAItpLZbQVh4WqUIwi3hysV/yPrSVric/IFYCUazks1FfU/MZRErMQeklUxh61LkulsQnNxEHh6FjaKm1HR8D2iUBEACLac8DVVu+qOyxYLgrZ6CTxFiQlY0DbRMu5OAr92w7k3QUmagskAib+woOIbnd0pRVN3QlSkezlM80ZoKdfU8OipyGWJQKPRQAi2nNktG2iXe+ec1uPllPCCnp6K25ltGibPeUMhwVgXQT7l1T4GcmmgabXDF8j7UJ+MBefnom3EPbOXQv2zkJbrgj4yFmSCGxBACLaLR1odR/usFBkikqWuYiFKHYmUaNVqi0hbfrBo+V6QY7K/km9QOorF+rZdM1pwMc6OR2IH02QWsop1twJcv8tn2X/WhBtuicdthYUclQEZLQ94CnsZAz9e96908DyRABBACLa62e0JRT1TE9ksZ1asmj2iJazJ1Ajkex36v5s2D/VjQjzNsuy6QOtujtB3r6v993teecOCkt78956MEHIH0g654DZZcD0JwtMm2jr8gEcQgMsczQCENEeHQTW/patgx6iFRbjne4IKIGi5Vq4pCQyZ6/eCWF5lqftz0aZRV3ou2wzV/uvC4Snqv/vqmND3cEgbptopzLSLZwWLqmzA90GWnjx8+MRgIj2HBltBxj5Q5MuFwUwo0XdF9ByHcMLRfPMbRUvj1sHdULvcWJ4/u13X1b6/Hi7p5IVbo8ARLSXQ6F5jrbDRcFwR6i6L2hHxhYvLsPy2gC635Ug3Z/9dM4AK0F/m04o1NrUyk7UPrsMKPaJA0sEz1L1bY55NIOOBwMBswoRGEYAItrLZbTDcJy44rCy/zwmecGID/VqbWZlf4X3Rw/CzzJV3IrLQSGzWSIgEYCIlpARgacjoDjGPuB48NOHzQDugQBEtMxo7zHZHAURIALPQQAi2ueExl6JABEgAvdAACJaZrT3mGyOgggQgecgABHtc0Jjr0SACBCBeyAAES0z2ntMNkdBBIjAcxCAiPY5obFXIkAEiMA9EICIlhntgyebDgUPBpzdEYFjEYCI9tgQDmhd0y1NDrbn779LcRTpTpDFZjkxJEW3vQZacyg4ACk2SQSIwAMQgIj2Uhmt6rCQygemr5KmGqilNcw8C6YTwzpT3U4JU7wl8ecqV5vWQqG3sKm1gyvvrUl7cLhsnggACEBEC7TzgCJt9a6qw4LqlBA1B7J2URV/qxzolDDFq77e1Bastt7/f8Bk7NpF91iUix7fEtt1StjYzghARHuOjLZNtAs2OQlaRGuScB3tauY7+YwZTgmF+LXsIxJs7lCgxaGQsRNYkaLcIs92Gq01Uh9dUR2Z53yXoWrJqjoGcmyti06UfRwT6xkdPesRgR4EIKLtaRAp+3CHhYn8VueBsAc6fzE7NWeDY4LXTB37YieKWQVY695u4VDgs1/p8ODqJt5g/t+LQlfW8Ow6oGaO0pFAI2q5ty3SxqobQj4mX3+u9/NnqvtVc2dIJSAr+90x7vnBYdU1AlmQLEMEDkYAItrLZ7QeREEYb04Z++NtJsrBjDZ3yEXnyZOL5RIQtVdzs0PNFSHXabVdI2o254LIhMFjIDtJ7mm5b/OFqyRv597gfMviT/3CUndnCNP1sWTnuh5tiOd7nNdgzSBsfNAZYTkicDwCENEeHwbSw4atg6J52dbgHq3PIF2W2b83GG91PfFpf34z/14+IFtdEX6ZsvFYzzg9obatuw2kjgS1uKTTguGG4B0eROIa9s3DHwuruvNC7QLx9RXjntq1pBSR5cUyROBABCCiPUdG24FC8aBKcbNdvvWBxGKWWd177d1i6AgXK7rtyFi9j33bzbczlsz24z0hYGzMVql9494eD1sgAnUEIKK9HIDaiQBN+HoZWOUc7QFOCT1Y1pwOetrIy/Y7NfT1FvZuRR15a9/X1FQ6HsX7QSeFAfRY5SwIQER7uYz2LOhujcO8OAw2frQjQdZ+a8vAzrTXOw25xz7e5iBmrEYENiIAEe3GPlidCBABIvDSCEBEy4z2pdcIB08EiMBGBCCi3dgHqxMBIkAEXhoBiGiZ0b70GuHgiQAR2IgARLQb+2B1IkAEiMBLIwARLTPal14jHDwRIAIbEYCIdmMfrE4EEgT8W2DWa8iEiwjcDQGIaJnR3m3anzSe+Vxw/2vLT4qX3RKBnRCAiHanvh7QjNQRqLyhNL13n73zbxziD0pf8v1/XS8AP1Bff3VUFU9B9XFb6D7ZHmfV3g1v4SHCOumQ2vU0CHRBmhZY1/j8zmO7xgzgUUJEe5WMNhF5SbQJLIeFVAchEOZK0phwjN1GnI6W+0Ly+mok/0waEZ/atKTv+7mZZHzNuS0vmb7Gi9fTsCleCe4GsEN3t7vtbRX0sa2vkz93vreN7W61IaI9x6Bb6l3G55YUoifkbEWu5Oq/ZG1imJSjqm1k6FnuC0LmbztBZP0mEojYjHY7HxjNdhG9wKGrns60yQUGaa973A9xfFAIX5OF3OsOCFsiLAUiABHtOTLaBtHOZPqxyPIJguzSnJXZqRCbAaT+VsyzDHf5AHdfiFsWelbSch1YcuhJmWxqQwp8g4tj0txF0iLLQSH2FXUbkPakC0VPvayvaXsicbQA3Biu5PhgunXAk8yCD0AAItq94zjEYWG+1V7VD90WwHLbbTgsJINLJRPzbYQght3KcLM2esArvji1thquA3OfqQsCQJoKGddkD5dhGQ4KU5m8TcsocnFNcJq2uScPajCZxyMxbbgxPMvxocig5TODcJUMIuz53rZJtIgdUs/iZNktCEBEe6WMdlXo0/ZN42IVDgtJttk+dmTv2Y49sJGZcOp+G74sn8r+quU6MHGUeMLvv8jfoey0JPCyH9RBQWbVysNHNbOdXRNcrKoLsCDRFbNWPKIt043hUY4PztctuYikWwKpJU/E4+dXcAHKXS9SnNa5CuX5sGwLNe5bFyLafbscbQ3Yo00eHNVu3ycWmg0U51jybNgIsUq0HW1YCKROA+lDuW/fovtC23UgnKyI5BGItmYpJuPxX07TxWHAQUF3cNBPb6xWPtLRwTj1AcQjMUXdGA5zfNB82aQcZuGMIee8xKGMEzghM/oVZL1hBCCiPUdG2x5jQoLJvqzhsGARZHG7Wr9l94aNyPZjexRbSmx1HWjX73dQaLcps1PvA6Y7+eq49MezBV+rLjZONd7sYnFUhGz3eQhARPu88Hp7lg+vsi9sRUS7PCeb+luln2cP2ObzuK02ekfRKr+X68CI20LLQaGnzZ6yNUxa8bSw7P18K/ZqvDsd4esdC8s/DgGIaK+S0T4Otmf1pD2sw8wP1YhH3BZaDgo9bfaUrUHeime3qdoL+/wkS18Gv9tw2NBDEYCI9qERsTMiQASIwM0QgIiWGe3NZp3DIQJE4KEIQET70IjYGREgAkTgZghARMuM9mazzuEQASLwUAQgon1oROyMCBABInAzBCCiZUZ7s1nncIgAEXgoAhDRPjQidkYEiAARuBkCENEyo73ZrHM4RIAIPBQBiGgfGtGmzqQwyIeT4Kj96E4M1hte8Ntf3Xqg2KubECwdfcc3nOoYQT2yEBEgAgACENFeI6NNVZAWyTsFhLoTQ1bYkubTPlte88Xe9mk5LgDzF4rEt6OgVzk3yDjCAbEgESACEgGIaM8BGaDeJb3Aqtldq5042pb6V6pLG1SU3O+cQMhb7klmATjF2dK4tWdgdzeGc0w4oyACt0EAItpzZLSYw0JVjzZOmeXEIKbVyoitz0J2iWW0q1wjSv76usPdGKT4NyAEfptlzoEQgeciABHt3iEe4rBQ3MpXMlLTiWEsm03w6SLafmQXNf7JLUCq6CNuDHI/eMe94f5hsAYReCkEIKK9Y0ZrZr69e7NyyWREG7YU5j/dgrWpe4DvZt1fDur6UlUfcWOQqvtU4H+p7zoH+0QEIKJ9Ynyi69btteaaoN3Cu3INJwZPZpOxn/JjfTYV3zOj1QShCzX+qMBvuTFIlf62S8M55ptREIH7IAAR7Tky2hbo6a0zfOogcWKYmNIwYATMGXck2kQYe9nVcMaFPJPVWgz8nAicCgGIaE8VsRlM5RxtQX6GE8Pks1U7BWB9Nge2I9EW/mTFRaE9M/K8rPkQr90USxABIjCIAES018hoBxE4dbVMjR86JxsHJDP8il31qcfO4IjAfRCAiPY+w+VIiAARIAKPRwAiWma0j58Y9kgEiMB9EICI9j7D5UiIABEgAo9HACJaZrSPnxj2SASIwH0QgIj2PsPlSIgAESACj0cAIlpmtI+fGPZIBIjAfRCAiPY+w+VIiAARIAKPRwAiWma0j58Y9ngAApMQzwHtskki0EAAItrroIg6LNTLlU4KUi9Bd2aY8Ini25OATEUmsfutsSMVtgIGNU2HzXM+aTLoODxazCa+Hffj460+N5sHzAaIQB0BiGivkdGiDgt2ueK1V4Fd3ZkhfTVXtYl5lvtCMffxIrNNbLy6pKpuDyvujxMqz6Ujg+LZfj/rBbtbmG2/INjSBRCAiPYc49hRvavqxGCJxhj9FxoEadlnui+s2XbILv1F4EhSWPRyrUXjLjpoDFB78AJti5139afeoaQXcjg0pWBtrrpi3BIA6+6GAES058ho93VY0PVoM20Bd2u9EILpzABktMv2woHuC3PWbG4HxMwaZbrA1E7RTGBhLD/I7cFh+eFZf/mpEOAUa555t8myDC/WkULptUGMtI98H3vbjdtU2p0HnTIQxM9UBiLavQN+qsOC5cRQ+HeJDLfpzADsD3fv0XYg79ueyfOnc14oftzn7/K22RI3z8qGW/2SKFQZR0HMJeGHPefvBdGWe9GL0liR/Y7sW6918mxwutvIxHo+PywH5YCs5nTx63xB8kLvtbEn1xdreucHd1p8U/9LjCN4dKwrFt0FAYhoXyejVXIh90Wc+EvdHpizjZygaw+CDnRfqJNeHJPyhRTknI5clJ0zYI9BSlJWdhhIWbv19Q/CvrtNjHyvNH1AJi9ab8sFZBmJawMmrLlSbD8dQ4gjJ9/yYR3mdPHdEW24xs3ZaEbgXQ8B4153AL7YaqFTxi7897BGIKJ9WDRmR4/YozWI1uvU1pwZuvzK0K2DBuqZ+4K0zKntCvz43W9XW51or1M5GbCW9fFG4ktjL09oRNuetVyIq3R1qP1eG3W7rItQMO8al+YsoZ0ief/6ZTqRUMYf0ldFbL3qdCGsi6b2LEcLO+5pHsX2SYo3nTLOwUtYFBDRniOjbQ0IdVgwyhWEmWaByakDmeEOZrStEVmf125vf368VxwYem4xe8puGcU+dZNMMd8iaXbRHutRThfb4m4OjAVOhABEtCeKt5XmTWdDp8xEZp+Ww0JxeyczG+VBTDXr8Q9uYjZTOTq14x5tcURK3mr6m1eX4i07tfNntYdkPWX3XwuAa8XSqV42ueiITLOW2X8u6W9+/Esf3Xani33iVu63DDeQ/WeKLY4jABHtNTLacRAuWTN5QSIQfEIs2efmIYOesicESz37rN3ux9jlbT/kWrHF6aIOWHfcJ8SeIWEIQESLNcVSROBZCJTH8r51HV9j3M9C4FX6hYiWGe2rLAeOkwgQgSMQgIj2iI7ZJhEgAkTgVRCAiJYZ7assB46TCBCBIxCAiPaIjtkmESACROBVEICIlhntqywHjpMIEIEjEICI9oiO2SYRIAJE4FUQgIiWGe2rLIcdxnmki8GRbe8wdDZBBGoIQER7HfgABS0/mMoB/dq7+8WRTEOHNLwd1iOqDbwC6t7Dt6QPu8RKxGSqAuXgZNf6DBgCeg6FSE+7Y7jtdlMXK3GwG8bF0LhiuBDRXiOjRR0WstchC2lEMY2alGDFKaHuvlBfFoHonDLTu/tT03sFCKnfsQB79dRa0PU+cRcDP/7qBURVQMPbvuKXsYw5Jg49F+57jPxuo4CI9hyD3km9y3+BsxRVt68p30+vOyW0YjMQtIjeVbOsdZZWOxwL0LlsqvhX++wRuNZxm3BW3+xqt23F3RxTco0FsnIUzMFyR7thDIbFagMIQER7joy2QWaWXqwJjC74sQhPa3XzrQPTfcHMC50oSJQh1L7YlTHnmXYhpD3tjwCuCBZxNUit6DOWlzq1eRtlTMuFRB1DxE5ru4ZrJW7VraExN+ZrvG3Sn1pHXC+qQ5mFii7xOvEA+7xQFYho98bjqQ4LyWBqt9ANRSmNaBXbm802gM1tAxe/94RRSKrmipAq9tv7w6oUY5QhNFwS1swxl5ksnRri9oEtXL7NIUF3a4hWMXUn4Hz8PdhNy0wIq0OuF8vazETVLTeMvb+cbO8QBCCivWdGazxgaC3sSkar+ZBJQe5uoRNFHzd1qQkZb+FYUHVFKB0FrAdp+mezHY3hkiBv0Zc2KjEtRAs+8Ot3SJAPSKVbg+2GEHhSOjkg2KVODD
2uF2tfIa4C+6obxiG8wEZ3RgAi2p37HGyutQ+afW5pv86nDqp6pW6P0DQ41PRta+4Lg6NdMiLZriL9t1q0SDX/mitCzOLq6vzpyQt9n1LvU/ZfczaIpLe2uz4QWzPMVddXuhXENgccEsQclG4Nsg/LaaGNXe7EMO56kTszVJwftqwt1n0oAhDRniOjbeECOiw0SDbsbTae8iokXnVfaIVtfp5ePLQMqf9oV/s4mR3y1vpp69DDPjOgfePZMvZjXS82LSRWfjICENE+OcaO7ivnaAUxts/KNvZn495bcVZU9I2cIwVHJYmoeArd2uKY++h1FJChoe4L2pnc9jnd1l2KDtKW8WQ033Qo0PvS18ierhfg8mCxiyAAEe01MtqLIN4bZvJATJK5v50EjyB1OwqIIJvuC9oDReycrnmO1sJpy3h68e/pa0/Xi944Wf7UCEBEe+oRvEBww4R0ZmyaJyrOHDxjIwJ9CEBEy4y2D1SWJgJEgAhIBCCiJWREgAgQASIwjgBEtMxoxwFmTSJABIgARLSEiQgQASJABMYRgIiWGe04wKxJBIgAEYCIljARASJABIjAOAIQ0TKjHQeYNYkAESACENFeBibrcH3yWeWgf1MfIa9XeRNtAky+u195pdfqzzchD8ujLydcZrIYKBF4HQQgor1GRpu9FpkIaqefqa+GVpwTpqWgfmY7OjQdF6z+Jp7++HoT5Grq477OeuVIicAlEYCI9hIjs5wTVFHwNTutOycEh4PJA8wpZ0nic5/Mot0zOgkx2u/wW/1VsW5lv5eYJAZJBF4TAYhor5HR5hMos1ggo1WyyKTFDg3aKRt18oYfE0kbZo0d5MmM9jW/oBz1PRCAiHbvoXY5LAx1romaWPupWlaadZyTYqGcJcg8l2KsvdePEO2yt0yDvqGlwEpE4AQIQER7xoy27lygOCck+7Vxz1V5INbzMEzdjpjJ0PpMTjpCtEt5QL7xBAuKIRABIlAiABHtZYCriXpb2SdKfJqrgjwJkO/RIo4LXUQLOuJeZrIYKBF4HQQgoj1jRltMUY1kl71Xces9PfHfmNHOx7ei5U2+hwo5LlhEi14cXmetcqRE4LIIQER7hdE1nROSM6kD51pVUrT2fQHHBe0BW36ka3qYZjxQu8LkMEYi8OIIQER7iYz2xSeSwycCROC8CEBEe97wGRkRIAJE4PwIQETLjPb8E8kIiQAROC8CENGeN3xGRgSIABE4PwIQ0TKjPf9EMkIiQATOiwBEtOcNn5ERASJABM6PAES0zGjPP5GMkAgQgfMiABHtecNnZESACBCB8yMAES0z2vNPJCMkAkTgvAhARLs1/L/667//av1p97GjqEqnxkAS25a66iBXJ4b4Ou9UDO0HLdcCeEM7/q28JPZJq/cgtbFFzcy/LVdxysjHmtT59vX+KQtsVHWbX8VO25TtA04bvrjlpmHG3zkWK96sn/BG4rd1buPn2WCDwNM8FzWlutb6u/nnENFuzWg9yf7Tv/5b+ufP67/9580ftxDf39+zL3Szll5gA6kM9livVosFjREt1wp8tB3ti7XnXCVxg7rCRp1wAYsXAdslY2qm4YQRX/2uEW3TaUO5qKa6GZZzSEnoMY6afrEZb/U1c6FK57B7e/9wdB1/XHxv7nfZq+Pphbe1+O7/OUS0W2HIiVb7t92H/0L4yfaTKiZ5/pKvAttZtlLLBMSCqoq/1DKMfDHCvl6a9oH8ncwAlbLAWNZMOOoj5NlbQNmPuRDDGRxXgl8IoD5XVbWzKSqXBc9xv7mL6jTf2aooSN12sliIUsnAwq8slwzLXWOOa4rHx6rjXLSf8GLu2CE+lHPRcg5ZMLXHsqwNK16VaMXFaP78/V3MjfvdlAAldxfAvGwllYvVh4h2j4z280///vX5p//4+u7+eKL9/PU/3L/D75oZrfiCFcQob20SxSstExC3N3FhuDrL1Xf5e7pQkuwgWYxGuWwhSHKbsqR4wYAyWnAs+S17NUuNcYv4h8alfKHMuRK3+llsBT7q1sNIRpt/IzOB9mE5y3hBSbPipLciEcC2U2w3jcq2jHoRkv2B8ebbMfIOIM6Zv2OZt19+frwrNk+U9MxXHUS0Wy8enkj/7l/+U92njb/3feTOC7HfZA9QXuFzIjFvfw1Smb9sn8uV2thjLAgJ+fLkhJR92XslG2Umho65SA7flP23SITgHquybTA2Vzk+kRS0lSczX3kLi6zSzHkDlaJUMF7H2SBalwgsCbW2zVJkuZZSm+YcMjfQGEtPvHFvNv4/id+vVT+O6Zc+nvnf2Rou9+2R+blvGYho98hof//Hv3z9/o//Nf3xxPv7f/7L1x/c3//g/m9ntPJhQrwlVjLT6a61vB1LnBjkhv2yMKxbXUWiUCX3Xm8wQSRQRhsWYHssRrl8DctMRcMu2aqoXEyKL/fgXBUEVCHaPOaarrD6fQ0EXTxwHMlok3jbGW2ynwk9JNQudEr8OUnXxtITr/WAcVmrbszTPq2LyROueSG6L3n2jAwi2p4GtbKeSP/2H/97+TP9+x/mf7v/m0SrZAHL9oGZ0YaFWVyNFVLxV1/zQRtyqx+YcN0SSIDYmtGiYzHKZRMzYej21r6t94DZPpuoUBtXPjeb5kqeIKgQLZqBqhcVbR8V2NesrJc860uezi/9u/YRIle+NNoWWf1kw7T4qq7MNa3m4oGVeXeUJjLT3Z/bNpjaINE2KRIi2j0y2oloI7lG0p3/bRHtRILJcZyZ0LQrqZxwlYTl09N8vzBzYJBfkBrR5l/8KtGmD6C692jRsVjl1OynklnD4yr3qKtzle0fhy9/avku98oni3ftYZj8PZLRzpm5TlLprXh1b9QkICOjne9CmlsH1gXEjD+ZVHcbrzzkLCigtdVhHJmTOEzYV75P+bibNHT/AhDRboWhdYa2TrTzHlARQLi1+sOPbKsg+0IkV3L5tLX44pT9qLfpSnZTLafGnG19KO2t1eJteFj46Fha5b7n5yjnL/mvGSbouNbMy56rkPiEfeGQ/bmn1cWT6hkfd1saTpmoqd7SRkLGFTJsOm8kpx0qe74biDY5TWGcukjjXMduxl/Ehexf70S0VlKTZ9dbCeQG9SGi3ZrRnh4nv2js+7LTD+FpASrbBZtjad3CVjr4dFsh+c3P5ljYQDcCfBBWQgYRbTfSF6oQMgbk5MCFBvXgULd/sfKHaCPz4dr4IM0+eOrL7o648D59UNsDgIj29hntdhzZAhEgAkSgigBEtMSPCBABIkAExhGAiJYZ7TjArEkEiAARgIiWMBEBIkAEiMA4AhDRMqMdB5g1iQARIAIQ0RImIkAEiAARGEcAIlpmtOMAsyYRIAJEQCXa8Te5HKDzK4P5u+C1d6LVKdj0Jg4nlQgQASJwLgSqRDvsiDD4Vk8CC4n2XKuE0RABIrAJAYhouxwRLJK03s3uUt8XSkyww8EmnFiZCBABIjCMQJVohx0ROohWtVTxQ1EETlJlp0i0uMPBMEKsSASIABHYiECVaIcdEbQ9WlXzNBc3xmxVgqq7JNqR9+I3osbqRIAIEIEOBKpEO+yIAGe0QtItmvJp+pZKe5oocnj4RtLtmHsWJQJE4EEIVIl2kyNCzQ4jIU3F2C8O2ixn6GkawtsPwpPdEAEiQAQKBGyiHXBE0Gwtll5be68VZ9jSIXXeOoCdADjzRIAIEIHnIXDQOdqKALN56iD1ik994oVeaeZLjzoBPA9i9kwEiMCrI8A3w159BXD8RIAIHI4ARLSHR8EOiAARIAI3RgAiWmod3HgFcGhEgAgcjgBEtIdHwQ6IABEgAjdGACJaZrQ3XgEcGhEgAocjABHt4VGwAyJABIjAjRGAiJYZ7Y1XAIdGBIjA4QhARHt4FOyACBABInBjBCCiZUZ74xXAoREBInA4Age9GeYFXtI/UcDLHJF8c2xY/DsXq6m8pZYHUut7DyHzw6eRHRABInBmBCDh78lt4c/uj/+/++OFwKs/GjFNv+tU1hoi2kCyktR/frx9fYsaCtZMwCR/5ulkbESACJwRAYhotzsseK2CmWhzAoUzSZGpZnoHC7AqOWu6tzHbjtmuzIL/19f/XrLx96/veXyOtD/e12w9zdTzGMXFhU4QZ1z/jIkIPASBxzgseLKqKHMlal9GVllV8EpgmsVnjAwWcnUwyf/bV+L2IPoqY4xESyeIh6xmdkIETorAYxwWfIa4iWhz7VpDk9YDnWSPcssCdHVAs+ymbq4k2s6tk5MuGIZFBIhAPwIPclgQxDiyddByWWjuvUrCyx/UKVsaI0Qrs/YpHrFdMv3T71PHvkm6/UuVNYjAdRF4mMPCYj8zQrRfYEbrM1nleMNqfQO6OowQrRpjhVDpBHHdbwwjJwIDCDzIYUHesqe379OpgGh9s3mPtjx14PYR3EmElfCKfVRtS2OIaP2ORbZ/G/ulE8TA0mQVInAfBJ5yjjaQa7iNfvv4cEQ4P/03j1jVXRbS6cjP0eZZpfxcfhbbdycNZqddfwEoTh1IPzTLMeLdnU6IJy2mbWO5ZQGe7b3POuNIiMBLI8A3w46afr7ocBSybJcIXA4BiGgvN6qnBCwyblqfP2UG2CkROCsCENFS6+Cs08e4iAARuAICENFeYSCMkQgQASJwVgQgomVGe9bpY1xEgAhcAQGIaK8wEMZIBIgAETgrAhDRMqM96/QxLiJABK6AAES0VxgIYyQCRIAInBUBiGiZ0Z51+hgXESACV0Bg5zfD8rOk4m0oRHxbIoYe+EfLdc3GoEtDVx8sTASIwKsgAAl/dzksROQOIcBHTMsGl4ZHhMc+iAARuBwCENF2OSxYRDtJCb5/vb/5TFfqGyiOBaizAVpuistwQDAvEEKYxlIfi9KIH05FbNFy+Jno4y6i4V1lXXCJzKKw68kw/b9OU2ERMCukGy+3PhkwEbgFAvs7LLSINvH0yoS4R5wNijojDgjJnoUTgxFC5fk0N4nW1Y1MF8kx+XcUlJm3WaCyLZwEuTqlMOkAsRL7LdYrB0EELonA/g4LTaK1lKuEXqyl5DUkY6hp2hoC3DWXhibR5opgNYeHTBg8FwrP5B3T1VXBKWbt83745zsFxi/5rWTQt0Ngf4eFAaJVJQT3JtqWA4I1tVMsgLlkQZY5mcrMtJ9omzhNY4jtur56H0DebnlzQETgHAjs77DQRbTZg6eRTBUlZNQBoeXS8JSMFsRpxt7r/b6/iy2Ec6w1RkEEXhaB/R0WeohWJa2Gh9eUtPkMExALz9qvu9TK+W+5NBgOEUdltChOCfbcNnjZbzUHfjoEdj5HK8anHe9SfifdFr7NJxKm50NopoqWi/uX0SAxc0Ao90ClI0JKWlWHiKOIdoJjdaWo4rQMwm8f0MXhdN82BvSyCEBvht0Sncue8wVmw49NMakEarIIESACByDwQkT7Gg4IIfPltsEB3xU2SQSGEXghoh3GiBWJABEgApsQINFugo+ViQARIAJtBEi0bYxYgggQASKwCQES7Sb4WJkIEAEi0EaARNvGiCWIABEgApsQINFugo+ViQARIAJtBEi0bYxYgggQASKwCQES7Sb4WJkIEAEi0EaARNvGiCWIABEgApsQINFugo+ViQARIAJtBEi0bYxYgggQASKwCYH/D0DxsSIhjGSAAAAAAElFTkSuQmCC” alt=”Description: J:tala_step1.PNG” />

شکل ۴-۱۱-معادله رگرسیون به دست آمده برای پیش بینی قیمت طلا با متد Stepwise

میزان خطای به دست امده برابر است با:

جدول ۴-۱۵-مقادیر خطای به دست آمده با استفاده از روش رگرسیون متد Stepwise با بررسی عوامل عنوان شده در پژوهش

RMSE MAE R SQURE
۴۰۷۰٫۶۲۱ ۳۲۷۰٫۴۶ ۹۸٫۴